PHOTOCHEMICAL REACTION OF FRIEDELIN WITH ACETONE

Hidekazu Shirasaki, Takahiko Tsuyuki, and Takeyoshi Takahashi Department of Chemistry, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

 and

Robert Stevenson

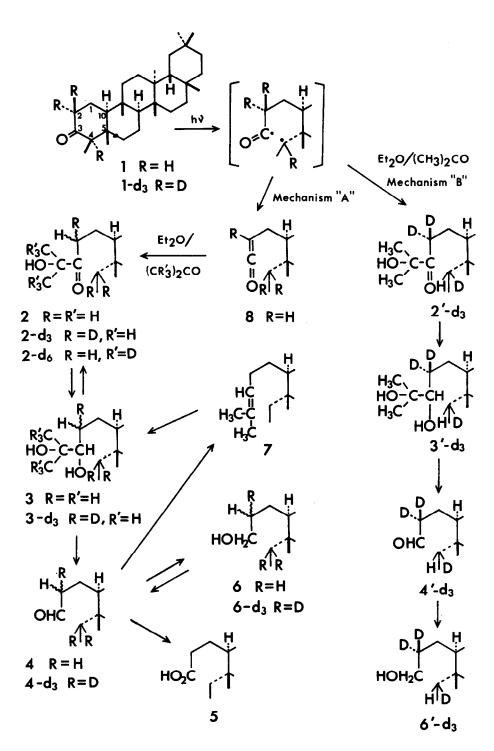
Department of Chemistry, Brandeis University Waltham, Massachusetts, 02154 U.S.A.

(Received in Japan 1 April 1975; received in UK for publication 19 May 1975) The photochemical reaction of friedelin (<u>1</u>) in various organic solvents has been reported.¹⁾ In this communication, we present a new reaction between a photochemically produced ketene and a ketyl radical in the photo-irradiation of friedelin (<u>1</u>) in ether containing acetone.

Friedelin (<u>1</u>; 86 mg) in ether (30 ml) containing acetone (0.5 ml) was irradiated with a high pressure mercury lamp for 2 hr under a nitrogen atmosphere in a quartz vessel.

By column chromatography, a hydroxycarbonyl compound (2; 12 mg) has now been isolated, m.p. 180.5-181.5 °C (crystallized from light petroleum); IR (Nujol) 3500, 1705, and 1140 cm⁻¹; PMR (CDCl₃) $\delta \sim 0.80$ (6H, s and t overlapped), 0.89, 0.95, 1.03, 1.18 (each 3H, s), 1.00, 1.37 (each 6H, s), 2.40-2.75 (2H, m), and 3.77 (1H, s; disappeared on addition of D₂O); (CD₃COCD₃) δ 4.18 (1H, s; disappeared on addition of D₂O); (CD₃COCD₃) δ 4.18 (1H, s; disappeared on addition of D₂O); (CD₃COCD₃) δ 4.18 (1H, s; disappeared on addition of D₂O); (CD₃COCD₃) δ 4.18 (1H, s; disappeared on addition of D₂O); (CD₃COCD₃) δ 4.18 (1H, s; disappeared on addition of D₂O); (CD₃COCD₃) δ 4.18 (1H, s; disappeared on addition of D₂O); (CD₃COCD₃) δ 4.18 (1H, s; disappeared on addition of D₂O); (CD₃COCD₃) δ 4.18 (1H, s; disappeared on addition of D₂O); (CD₃COCD₃) δ 4.18 (1H, s; disappeared on addition of D₂O); mass spectrum m/e 486 (M⁺), 471, 457, 453, 443, 430, 428, 413, 319, 307, 301, 275, 274, 273, and 205 (base peak); Found: C, 81.57; H, 12.07 %. Calcd for C₃₃H₅₈O₂: C, 81.42; H, 12.01 %. The molecular formula showed an increment of C₂H₈O in comparison with that of friedelin (C₃₀H₅₀O).

Conversion of this hydroxycarbonyl compound (2) to the known 10β -(2-carboxy-ethyl)-5 α -ethyl-des-A-friedelane (5)^{1b,d)}by successive LAH reduction, Pb(OAc)₄


oxidation and Ag_2^0 oxidation indicated that it had the structure 5α -ethyl-10 β -(4-hydroxy-4-methyl-3-oxopentyl)-des-A-friedelane (2). This was confirmed by the following synthesis.

 5α -Ethyl-10 β -(2-formylethyl)-des-A-friedelane (4), prepared from 5α -ethyl-10 β -(3-hydroxypropyl)-des-A-friedelane (6),^{1d)} was treated with isopropyltriphenylphosphonium bromide. The resulting isopropylidene derivative (7) was oxidized with $0s0_4$ to give a mixture of epimeric diols (3), which on oxidation with $Cr0_3$ yielded the hydroxycarbonyl compound identical with the photo-irradiation product.

The structure of $\underline{2}$ indicated a participation of acetone and a mechanism involving the addition of the acetone-derived ketyl radical (2-hydroxy-2-propyl radical) followed by abstraction of a hydrogen atom, would reasonably account for the formation of $\underline{2}$. This was substantiated by the following experiments. When friedelin ($\underline{1}$) was photolyzed for 3 hr in ether without addition of acetone, no hydroxycarbonyl compound ($\underline{2}$) was obtained. When acetone-d₆ (1 ml) was added to a solution of $\underline{1}$ (317 mg) in ether (150 ml) and the solution was irradiated for 5 hr, the resulting hydroxycarbonyl compound ($\underline{2}$ -d₆; 45 mg) showed the expected molecular ion peak at m/e 492.

2,2,4-Trideuteriofriedelin $(\underline{1}-d_3; 101 \text{ mg})$ was subjected to the photochemical reaction for 6 hr in ether (70 ml) containing acetone (0.7 ml) to give a trideuteriated hydroxycarbonyl compound $(\underline{2}-d_3; 11 \text{ mg})$, which showed the molecular ion peak at m/e 489. Reduction of the trideuteriated product $(\underline{2}-d_3)$ with LAH in ether yielded a mixture of the epimeric diols $(\underline{3}-d_3)$, which on treatment with Pb(OAc)₄ in benzene gave an aldehyde $(\underline{4}-d_3)$ with the molecular ion peak at m/e 431. A doublet signal (5 9.73, J=2 Hz) due to the aldehydic proton in the PMR spectrum of $\underline{4}-d_3$ indicates that an α -carbon atom adjacent to the carbonyl group bears <u>one</u> deuterium atom and moreover that the remaining two deuterium atoms attach to the C₍₄₎-atom. This was confirmed by the PMR spectrum of the alcohol $(\underline{6}-d_3)$, using Eu(dpm)₃ as a shift reagent, in which a signal due to the methyl group attached to the C₍₄₎-atom was observed as a singlet.

These observations lead to the conclusion that the 2-hydroxy-2-propyl

radical attacked the carbonyl carbon atom of a ketene (8) to form a carbon radical which abstracted a hydrogen from the solvent (mechanism "A"). An alternative pathway (mechanism "B") involving an initial attack of the 2hydroxy-2-propyl radical on the acylalkyl biradical formed by α -cleavage of friedelin (1) and a subsequent hydrogen abstraction from the solvent has been excluded. In an experiment using 2,2,4-trideuteriofriedelin (1-d₃) in ether containing acetone, the degradation of the product (2'-d₃) would give an aldehyde (4'-d₃) whose aldehydic proton should resonate as a singlet in the PMR spectrum. Similarly, a signal due to a methyl group at $C_{(4)}$ of an alcohol (6'-d₃) would appear as a doublet. These predictions were in fact contrary to observation.

The presence of pinacol in the photolysate was demonstrated by glc examination further supporting the involvement of the 2-hydroxy-2-propyl radical in the photolysis of friedelin $(\underline{1})$ in ether containing acetone.

REFERENCES

-a. F. Kohen and R. Stevenson, <u>Chem. and Ind.</u>, <u>1966</u>, 1844. -b. T. Tsuyuki,
S. Yamada, and T. Takahashi, <u>Bull. Chem. Soc. Japan</u>, <u>41</u>, 511 (1968). -c.
T. Tsuyuki, R. Aoyagi, S. Yamada, and T. Takahashi, <u>Tetrahedron Letters</u>, <u>1968</u>, 5263. -d. F. Kohen, A. Samson, and R. Stevenson, <u>J. Org. Chem.</u>, <u>34</u>, 1355 (1969). -e. M. Takai, R. Aoyagi, S. Yamada, T. Tsuyuki, and T. Takahashi, <u>Bull. Chem. Soc. Japan</u>, <u>43</u>, 972 (1970). -f. R. Stevenson, T. Tsuyuki, R. Aoyagi, and T. Takahashi, <u>ibid.</u>, <u>44</u>, 2567 (1971). -g. R. Aoyagi, T. Tsuyuki, T. Takahashi, and R. Stevenson, <u>Tetrahedron Letters</u>, <u>1972</u>, 3397. -h. R. Aoyagi, S. Yamada, T. Tsuyuki, and T. Takahashi, <u>Bull. Chem. Soc. Japan</u>, <u>46</u>, 959 (1973). -i. R. Aoyagi, T. Tsuyuki, M. Takai, T. Takahashi, F. Kohen, and R. Stevenson, <u>Tetrahedron</u>, <u>29</u>, 4331 (1973). -j. H. Shirasaki, R. Aoyagi, T. Tsuyuki, T. Takahashi, and R. Stevenson, <u>Bull. Chem. Soc. Japan</u>, <u>48</u>, 1073 (1975).